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Abstract

Humans learn from visual inputs at multiple timescales, both rapidly and flexibly1

acquiring visual knowledge over short periods, and robustly accumulating online2

learning progress over longer periods. Modeling these powerful learning capabili-3

ties is an important problem for computational visual cognitive science, and models4

that could replicate them would be of substantial utility in real-world computer5

vision settings. In this work, we establish benchmarks for both real-time and6

life-long continual visual learning. Our real-time learning benchmark measures a7

model’s ability to match the rapid visual behavior changes of real humans over the8

course of minutes and hours, given a stream of visual inputs. Our life-long learning9

benchmark evaluates the performance of models in a purely online learning cur-10

riculum obtained directly from child visual experience over the course of years of11

development. We evaluate a spectrum of recent deep self-supervised visual learning12

algorithms on both benchmarks, finding that none of them perfectly match human13

performance, though some algorithms perform substantially better than others.14

Interestingly, algorithms embodying recent trends in self-supervised learning – in-15

cluding BYOL, SwAV and MAE – are substantially worse on our benchmarks than16

an earlier generation of self-supervised algorithms such as SimCLR and MoCo-v2.17

We present analysis indicating that the failure of these newer algorithms is primarily18

due to their inability to handle the kind of sparse low-diversity datastreams that19

naturally arise in the real world, and that actively leveraging memory through nega-20

tive sampling – a mechanism eschewed by these newer algorithms – appears useful21

for facilitating learning in such low-diversity environments. We also illustrate a22

complementarity between the short and long timescales in the two benchmarks,23

showing how requiring a single learning algorithm to be locally context-sensitive24

enough to match real-time learning changes while stable enough to avoid catas-25

trophic forgetting over the long term induces a trade-off that human-like algorithms26

may have to straddle. Taken together, our benchmarks establish a quantitative way27

to directly compare learning between neural networks models and human learners,28

show how choices in the mechanism by which such algorithms handle sample29

comparison and memory strongly impact their ability to match human learning30

abilities, and expose an open problem space for identifying more flexible and robust31

visual self-supervision algorithms.32

1 Introduction33

Deep neural networks (DNNs) optimized to perform visual recognition tasks using a large-scale34

human labeled dataset – ImageNet [15] – have produced state-of-the-art visual models [39, 50, 26].35

Moreover, they have also been the most quantitatively accurate predictive models of neuronal36
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responses in different sensory areas in the primate brain [57, 31, 5]. Their behavioral error patterns37

are also more consistent with those of non-human primates and humans than alternative models [49].38

However, these models are biologically implausible due to the requirement for substantial human-39

annotated labels during training, which are extremely costly, if not impossible, for real organisms40

to obtain. Recently, unsupervised learning models have made significant progress in closing the41

gap to supervised models in performance on visual recognition tasks without the need for labeled42

data [56, 62, 52, 27, 12, 10, 22, 11, 58, 7, 9, 28]. Comparisons of these models to neuronal data43

in Zhuang et al. [64] and Konkle and Alvarez [38] show that they achieve high neural predictivity44

in early, middle, and higher cortical areas of the ventral visual stream (VVS). Even when these45

algorithms are trained on noisy and limited first-person videos collected from head-mounted cameras46

on three infants [51], these algorithms still yield competitive neural predictivity [64] and reasonable47

performance on small-scale categorization tasks [46].48

However, these new powerful unsupervised algorithms have the potential to go beyond just the49

ability to achieve high performance or, post-training, match the static adult human representation –50

which supervised models already do reasonably well. Indeed, because these models can leverage51

the unlabelled stimuli used by biological organisms during visual learning, it is plausible that they52

might describe the learning dynamics of human behaviors under all time-scales. A model that had53

this capacity would be of great value both for understanding the biological mechanisms underlying54

visual development [33, 2, 41], as well as solving continual learning challenges in computer vision55

and robotics [42, 14, 25, 45].56

In this work, we propose benchmarks for both real-time and life-long visual learning. Our real-time57

learning benchmark is constructed through quantifying the error in matching the visual categorization58

behavior changes in human adults reported by Jia et al. [30] (MIT License) during hour-long sessions.59

Our life-long learning benchmark is built using SAYCam [51] (License CC-BY 4.0) to create a60

training curriculum based on the visual diet experienced by human children over several years, with61

data presented in the same order and roughly the same duration as how the children experienced them.62

We then train DNNs using this naturalistic curriculum. Critically, this use of SAYCam differs from63

recent work such as Orhan et al. [46] and Zhuang et al. [64], where the video clips are simply used64

with a standard offline training protocol involving randomization and batching, which fails to capture65

the temporal structure of how experiences accrete over time in children. These two benchmarks are66

naturally complementary, because requiring a single learning algorithm to be locally context sensitive67

enough to match real-time learning changes while stable enough to avoid catastrophic forgetting over68

the long term is a very strong constraint.69

Within this framework, we evaluate multiple high-performing unsupervised learning algorithms.70

Surprisingly, we find that several of the more recently proposed self-supervised algorithms, including71

BYOL [22], SimSiam [11], SwAV [7] and MAE [28], largely fail to match human learning in the72

real-time benchmark and show lower performance in the life-long benchmark, compared to an earlier73

generation of algorithms like SimCLR [10] and MoCo v2 [27, 12]. We find that the best-performing74

algorithms on both benchmarks share a key algorithmic design feature: actively contrasting one75

example with another, a way of leveraging memory called negative sampling that has been actively76

avoided in more recent algorithmic approaches. To test whether this design indeed facilitates learning77

in a low-diversity environment, we create an algorithm variant of BYOL through adding negative78

sampling and show that this variant greatly outperforms vanilla BYOL on both our short and long-79

term learning metrics. We also add this design to DINO [9], a high-performing ViT-based contrastive80

learning algorithm, and find that it consistently improves performance in the life-long benchmark.81

Additionally, we systematically investigate how key parameters of the continual learning process82

influence performance for the two benchmarks and identify an underlying trade-off between them that83

acts as a strong constraint on human-like learning models. Finally, we perform an analysis indicating84

that one major mechanism underlying poor performance on our real-time learning benchmark is an85

algorithm’s inability to capture the sparse learning signals in low-diversity (but natural) environments.86

In the following sections, we first review relevant literature in Sec. 2. Then, we describe methods87

including how the benchmarks are constructed and how the continual learning process is constructed88

in Sec. 3. Following the method section, we show the results and the analyses in Sec. 4. Finally, we89

discuss limitations and future directions in Sec. 5.90
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2 Literature Review91

Unsupervised Learning Algorithms. Recent progress in contrastive learning models has significantly92

improved performance on standard ImageNet benchmark, closing the gap between unsupervised and93

supervised models [22, 56, 10, 27, 12, 11, 58, 8, 62, 52] and neural predictivity [64, 38]. A subset94

of these models explicitly sample negative embeddings from different places including a memory95

bank [56], a memory queue [27, 12], and other input images from current batch [10]. Recent efforts96

removing negative samples have produced state-of-the-art performance [11, 22, 58, 8]. However,97

even without negative samples, these algorithms may rely on batch normalization to implicitly98

contrast embeddings of positive pairs with embeddings of other pairs in the same batch [53]. More99

recently, contrastive learning algorithms have also been used to train ViTs [16] and shown good100

performance [9, 13]. Additionally, a masked autoencoding objective has been proposed and proven101

efficient in training large-scale ViTs [28], which opens space for an entirely different route for102

unsupervised DNN training than contrastive learning algorithms. It is therefore interesting to evaluate103

whether models trained by this different algorithm perform in a human-like fashion.104

Real-time and Continual Visual Learning in Real Organisms. Jia et al. [30] reported human visual105

categorization performance changes after unsupervised visual experience. Conceptually similar106

effects have also been found in individual primate IT neurons [43]. These effects are also potentially107

the neuronal basis for the behavioral changes of human subjects [30]. As for continual learning at a108

longer scale, early cortical organization is considerably mature at birth [55, 18], but the development109

of higher cortical areas and their processes underlying global form perception is a matter of ongoing110

debate [34, 35]. Although monkeys and humans can perceive elementary contours and discriminate111

textures quite early [1, 17], the ability to perceive composite patterns built from contours and texture112

takes much longer (2-3 years), reminiscent of that for global motion perception [17, 36].113

Unsupervised Deep Neural Network Models for the Visual System. DNNs trained with contrastive114

learning algorithms on ImageNet have been shown to accurately predict the neural responses from115

multiple cortical areas of VVS [64, 38]. Apart from contrastive learning algorithms, Higgins et al.116

[29] show β−VAE, optimized to reconstruct the input image and simultaneously encode semantically117

meaningful hidden variables, can discover important factors for faces in a similar way as macaque118

IT neurons. However, it is unclear whether β−VAE produces quantitatively similar responses119

towards general stimuli as the neural responses from the VVS. Although these unsupervised learning120

algorithms yield accurate models of the visual system, they have not been used to model the specific121

patterns of learning dynamics in the visual system. Moreover, the training curriculum in prior122

work repeatedly presents the whole training dataset in a standard offline batched fashion, breaking123

the temporal structure of natural experience. In this work, we address both issues by testing the124

unsupervised DNNs on both the real-time and the life-long learning benchmark.125

Curriculum and Life-long Learning for Neural Networks. Research in curriculum learning aims to126

develop specific curricula to improve training efficiency [61, 3, 32, 21, 24, 60]. In contrast, here127

curriculum structure is not a free variable: we work with (as natural as possible an approximation128

of) the actual curriculum of child learning to evaluate and improve algorithms. Networks trained on129

our realistic learning curriculum perform worse than networks using the offline curriculum, possibly130

due to catastrophic forgetting. Solving this issue is a major focus in life-long learning for neural131

networks [47]. Although this issue can be resolved through accumulating the learning experiences132

in a “memory” storage and jointly learning from memory and the current context, maintaining this133

continually-growing storage will be undesirable in many real-world applications. Therefore, methods134

like Elastic Weight Consolidation [37] and Generative Replay [54] have been proposed to address this135

issue without the need to maintain the storage, though these methods still underperform the storage136

solution. However, these methods are typically developed for training curriculum with drastic task or137

domain shifts, which is different from the life-long curriculum where no explicit tasks are defined and138

the domain shifts more smoothly. So in this work, we adapt the memory-storage solution and further139

explore how mixing it with the current-context learning with different ratios influences performance.140

3 Methods141

Real-time Learning Benchmark. This benchmark tests the models on five test phases separated by142

four exposure phases, following how humans were tested in Jia et al. [30] (Fig 1 A). To test the143

models, we first constructed a visual stimuli stream through simulating what humans were perceiving144
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Figure 1: Real-time and life-long visual learning benchmarks. A. In the real-time benchmark, test
and exposure phases are iterated for both humans and DNNs to correspondingly measure the object
discrimination performance and present pairs of objects selected based on the experiment condition
(“Swapped” or “Non-Swapped”). The schema for humans is provided in this panel as an example.
For the Swapped condition, exposure phases show subjects or DNNs different-sized images from
different objects, while for the Non-Swapped condition, the images are from the same object but with
different sizes. B. Models learn from the whole datastream including both test and exposure phases,
each of which takes 10 minutes. Learning is done in batches, where each batch consists of two parts:
one part sampled from memory and the other part sampled from a sliding time window containing
the recent visual experience in the current context, whose length is called the current-context replay
window. The ratio between these two parts is called the current-memory mix ratio. Each item in one
batch aggregates two temporally nearby images randomly sampled from a short time window called
the aggregation time. C. In the life-long benchmark, models sequentially learn from the first-person
infant videos in the SAYCam dataset grouped in segments and sorted by the age of the infant when
these videos were recorded. D. Similar to B, models evaluated in the life-long benchmark jointly
learn from memory (previous segments) and the current segment.

during their experiments. For example, the corresponding part of this stream for one exposure phase145

was built through concatenating the approximated visual stimulus of 400 exposure trials. Each trial146

contained 200ms presentation of the two object images followed by the gray background images147

for 1300ms (see SI Fig 5 A for examples). The gray background images serve as a proxy for the148

visual inputs of human subjects during inter-trial intervals. All stimulus are grayscale images, as Jia149

et al. [30] tested human subjects with grayscale images. The stimuli stream for one test phase was150

constructed through simulating 200 test trials. In the test trial for human subjects, one test image151

that was created by placing a big or small sized object in front of a randomly selected background152

was first presented after the 500ms fixation time. This test image was only presented for 100ms153

and followed by the image of the two middle sized objects put together. The human subjects would154

then be required to make a choice between the two objects before moving on to the next trial. To155

approximate the visual stimulus humans perceive during one test trial, we built the stream for the156

test trial through starting from the gray background image for 500ms. It was then followed by the157

test image for 100ms. We further hypothesized that human subjects made saccades between the two158

objects after the test image and simulated four saccades across the two presented middle sized objects,159

of which the interval was 600ms. Specifically, the test image was immediately followed by four160

blocks of single object images, each of which contained 600ms presentation of one of the two object161

images. We provide a more detailed pseudo-code description of this stream construction process in162

the Supplementary Information (SI, see Alg 1 and Sec. 1.1.2 in SI). Although this process involves163

several key parameters which were conveniently set as constants, such as the number of saccades and164

the interval of two saccades, we have verified that reasonably varying these constants or changing165

them to be stochastic does not change our conclusions.166

After constructing the visual stimuli stream, we then sampled from this stream to get batches of167

images that were fed to the DNNs to train them. This sampling procedure is described later in this168
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section as the continual learning process. The DNNs homogeneously learn from their perceived169

visual input, regardless of whether it was from test or exposure phases. DNN outputs during test170

phases were extracted to compute the categorization performance (measured using d′) and then to171

compute the learning effects through subtracting the changes of d′ on the exposed objects by the172

changes of d′ on the non-exposed objects (see SI Sec. 1.1.3 for details). These learning effects are173

then compared to the human data collected for all the three experiment conditions (Non-Swapped,174

Swapped, and Switch conditions). The Non-Swapped and the Swapped conditions correspondingly175

keep or change the object identities in the two images (Fig 1 A), in which humans show increasingly176

better or worse categorization performance. The Switch condition combines the first two exposure177

phases of the Non-Swapped condition and the later two exposure phases of the Swapped condition,178

which therefore leads to first increasing and then decreasing human learning effects. For one test179

phase of one condition, the absolute difference between the model effects and human effects is180

computed and then averaged across all bootstrapping samples. This difference is then normalized by181

the same measure from the mean of human effects, making its minimal value 1 (see SI Sec. 1.1.4).182

Because the result from the first test phase, which is before the exposure phase, is used as a baseline183

in the learning effect computation (see SI Sec. 1.1.3), only the learning effects from the later four184

test phases are meaningful. As there are three conditions, the difference across all these 12 phases is185

averaged to get the final mismatch score to human. In addition to this aggregated mismatch score186

across all test phases, all of the bootstrapped values of the per-test difference score are also compared187

to 1 to measure the statistical significance of this individual score being different from 1. Also,188

we find that the initial d′ on these tested objects (faces in particular) is important for matching the189

human learning effects (see SI Sec. 1.1.6). Therefore, we pre-train the models on both ImageNet190

and VGGFace2 [6] 1 with a gray-filled random-central-positioned data augmentation added to the191

original data augmentation pipeline (see Fig 1 B for examples and SI Sec. 1.1.1). We fix the number192

of total updates for the models (150 steps each phase) but allow a freely-moving learning rate to get193

the minimal mismatch score (see SI Sec. 1.1.5 for more discussion of this).194

Life-Long Learning Benchmark. We first create a subset of SAYCam by taking all videos from child195

Sam, yielding 200 hours of videos, called SamCam. These videos are then sorted by the age they196

were taken and then grouped into 100 segments, which are sequentially presented to the models197

(Fig 1 C). The models trained on these segments are evaluated every 10 segments through extracting198

their features on a subsampled ImageNet (MiniImageNet) and testing the performance using SVM199

(see SI Sec. 1.2.2). All 10 performance numbers are averaged to get the final measure, which is called200

the "trajectory-averaged Mini-ImageNet performance".201

Continual Learning Process. Intuitively, three factors characterize continual visual learning: how202

learning from memory and the current context are mixed, how much of the recent visual experience203

in the current context is replayed, and how temporally close two visual stimulus need to be to get204

aggregated. For example, more learning from memory means better long-term learning performance205

but potentially less flexible in real time as that leads to less focus on the current context. Similarly,206

sampling from a longer replay time window in the current context with a fixed budget enables the207

simultaneous learning or contrasting of more diverse visual experiences but also risks in missing the208

very recent learning signals as less of them are sampled.209

We formalize these factors in both benchmarks via parameterizing a standardized continual learning210

process, in which models learn from batches constructed through mixing samples from memory211

and a recent time window in the current context. The memory in the real-time benchmark is the212

pre-training dataset (ImageNet and VGGFace2), whereas the memory in the life-long benchmark is213

the previous segments. To get the part from the current context, a time point corresponding to each214

batch is first computed depending on its relative position in the whole segment. For example, the215

time point for the last batch in the real-time benchmark is 90 minutes, while that in the life-long216

benchmark is the end of the current segment (Fig 1 B, D). This time point is then the end point of the217

replay window whose length is controlled by the current-context replay window (W ), from which the218

visual experience is sampled to form the current context. To get the samples, a short time window of219

length aggregation time (T) is first sampled within the replay window. Two images are then randomly220

sampled within this short window as the inputs to the models (Fig 1 B, D). Finally, the ratio between221

the samples from memory and the current context is controlled by the current-memory mix ratio (R).222

1Although this dataset has been taken offline, this pretraining process should also work with other large-scale
face datasets such as CelebA dataset [44], since the face test images are quite general and independent of
VGGFace2 (see Fig 1 A).
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Figure 2: Life-Long Learning results. Life-long benchmark performance measured by the trajectory-
averaged Mini-ImageNet performance. Three evaluated continual learning conditions are shown
here with different current-context replay windows and current-memory mix ratios. Long replay
window means W = 20m and short window means W = 0.5m. More current-context learning
means R = 3 : 1, balanced means R = 1 : 1, and less means R = 1 : 3. In all conditions, T = 0.2s.
Results in the other three conditions can be found in SI Fig 1. The error bars here are typically
too small to see, so any visible differences here are likely highly significant (see the right panel of
Fig 4 A). The performance numbers are provided in SI Table 1.

See SI Alg. 2 and Alg. 3 for pseudo-code descriptions of this process in the real-time and life-long223

learning benchmarks.224

Unsupervised Learning Algorithms. In general, contrastive learning algorithms use DNNs to project225

high-dimensional raw pixel inputs into a lower-dimensional compact space and optimize the DNNs226

to make embeddings “robust” to data augmentation. Specifically, let f represent the DNN being227

optimized and x represents an arbitrary input image, contrastive learning algorithms first sample two228

data augmentations (v0 and v1) and then optimize f to have two resulting embeddings (e0 = f(v0(x))229

and e1 = f(v1(x)) in dimension D) be predictive of each other. Since both the real-time and the230

life-long benchmarks require the models to learn from the temporal statistics in videos, we follow231

the practice introduced in Zhuang et al. [63] to aggregate the embeddings of two images (x0 and x1)232

sampled from a short time window, meaning that e0 = f(v0(x0)) and e1 = f(v1(x1)). This work233

benchmarks the following algorithms: SimCLR [10], MoCo v2 [12], BYOL [22], SimSiam [11],234

Barlow-Twins [58], SwAV [8], DINO [9], and MAE [28]. Because they are all previously published235

algorithms, we only briefly describe them here. SimCLR treats a batch of input images as a group236

and uses other images in the same group as negative samples to be separated from both e0 and237

e1. MoCo v2 also uses negative samples, but it samples them from a maintained queue of recent238

embeddings. Another difference between SimCLR and MoCo v2 is that MoCo v2 maintains a239

running average of the optimized DNN as the target network, also called “momentum encoder” (f̂ ).240

So e1 is replaced with f̂(v1(x1)). BYOL also uses f̂ , but it does not use negative samples. Instead,241

it only tries to predict e1 from e0 using a Multi-Layer-Perceptron (MLP). SimSiam is like BYOL242

without momentum encoder and with stop gradient operation on the target embeddings. SwAV243

maintains trainable prototypes and optimizes f to achieve identical assignments of e0 and e1 to these244

prototypes. Barlow-Twins is like “transposed” SimCLR. SimCLR maximizes the diagonal elements245

and minimizes the off-diagonal elements of the matrix E0E1T , where E0 and E1 are batched e0246

and e1 in the shape of (bs, D) (bs is batch size). Barlow-Twins does the same thing, but to E0TE1.247

DINO is similar to BYOL on ViTs, but with additional practices including softmaxing e0 and e1 and248

centering e1. MAE randomly masks out patches of v0(x0) and then uses ViTs to reconstruct the249

masked patches. In our benchmarks, the target of MAE is changed to the masked patches of v0(x1).250

We additionally create two variants through introducing SimCLR-style negative sample choice and251

loss definition to BYOL and DINO, called BYOLNeg and DINONeg (see SI Sec. 1.2.3).252

Our implementations are based on OpenSelfSup [59]. For most of the algorithms, we use ResNet-18.253

For algorithms using ViTs, we use ViT-S. We additionally test SimCLR-ResNet-50 as Resnet-50 has254

a similar number of trainable parameters as ViT-S. More details are in SI Sec. 1.2.1.255
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4 Results256

Life-Long Learning Results. We first systematically vary the current-context replay window and257

the current-memory mix ratio to show how these two parameters influence the results on the life-258

long benchmark (Fig 2). Although these two parameters only control within-batch diversity, they259

significantly influence the life-long results. Specifically, for the given algorithm, its performance260

consistently improves whenever the change of the parameters increases within-batch diversity (also261

see SI Fig 1). Although all algorithms show this consistent change with respect to the within-batch262

diversity, the magnitude of this change greatly differs across algorithms. In fact, the performance of263

algorithms without negative sampling, including SwAV, BYOL, and SimSiam, is much worse than264

SimCLR, MoCo v2, Barlow-Twins, and BYOLNeg in the medium-diversity condition (short replay265

window with balanced mix ratio), and catastrophically fails in the low-diversity condition (short266

replay window with more current learning). Even in the high diversity condition, BYOL and SwAV267

perform worse compared to SimCLR, unlike the result on ImageNet, where both previous reports and268

our reimplementation find that SwAV and BYOL significantly outperform SimCLR (see SI Fig 4).269

This inconsistency can actually be explained by the higher sensitivity of SwAV and BYOL to the270

within-batch diversity compared to SimCLR, as SamCam is in general less diverse compared to271

ImageNet. To confirm that this result is robust to hyperparameter changes in these algorithms, we272

tested BYOL with different key hyperparameters and found that it still fails in the lower-diversity273

conditions across all tested configurations (see SI Fig 7).274

DINO is an interesting model as it is like BYOL with ViT with additional practices like centering275

and softmaxing, yet its drop in low-diversity condition is much smaller. However, as the centering276

operation is very similar to contrasting the current teacher embedding to previous embeddings, the277

result of DINO is actually consistent with the hypothesis that negative sampling is useful.278

Unlike the contrastive learning algorithms, MAE is insensitive to the change of the within-batch279

diversity, as its performance barely changes with respect to the continual learning conditions. As the280

performance of DINO with the same ViT architecture is significantly influenced by the diversity, this281

insensitivity of MAE cannot be due to the ViT architecture it uses. Instead, it is likely due to the282

fact that its loss formulation focusing more on within-image cross-patch relations, while the general283

contrastive learning loss formulations focus more on the cross-image relations.284

Finally, although the life-long benchmark uses one specific source of developmental egocentric video285

(SamCam), we find that the results above are highly robust to the specific choice of data source,286

remaining consistent when evaluated on egocentric videos either from other child subjects, or from287

adults in the Ego4D [20] (MIT License) dataset (see SI Fig 3). However, the child developmental288

dataset more starkly exposes the gaps between the distinct algorithm classes across all data diversity289

parameter conditions, which underlies our choice to use it as the benchmark.290

Real-Time Learning Results. We find that the algorithms that fail in the low-diversity conditions also291

tend to fail in the real-time benchmark even after aggregating their performance across all tested292

continual learning conditions (Fig 3 A, results of separate conditions are in SI Fig 2). Interestingly,293

MAE completely fails to match human performance changes on the real-time learning benchmark294

(Fig 3 B), which is analyzed later. We further hypothesize that the algorithms explicitly leveraging295

negative samples in the loss formulations also perform well on low-diversity conditions. This is296

validated by the results of BYOLNeg and DINONeg, as BYOLNeg outperforms BYOL on both297

real-time and life-long benchmarks and DINONeg outperforms DINO on the life-long benchmark298

and performs similarly as DINO on the real-time benchmark.299

Tradeoff between real-time flexibility and the life-long stability. Although higher within-batch diversity300

generally leads to better life-long benchmark performance, achieving this through lowering the mix301

ratio implies less learning from the current context, which intuitively could hurt the real-time learning302

performance. To evaluate this intuition, we systematically test the corresponding performance on303

both benchmarks using one of the best-performing models on the real-time benchmark (SimCLR-304

More-MLPs) under the continual learning conditions with more extreme parameter settings. The305

per-condition learning effect results for these tests are shown in SI Fig 8.306

For the current-memory mix ratio parameter, more learning on the current context (higher ratio)307

reduces the within-batch diversity, yielding worse life-long learning performance (Fig 4 A, left panel).308

But until R reaches the extremely high value (1:0, meaning only learning from the current context),309

the real-time learning performance only shows slight increase compared to the base 1:1 value. The310
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Figure 3: Real-time learning results. A. Real-time benchmark performance measured by the
mismatch scores to human learning effects. Lower is better and the minimal value is 1.0. Error bars
are standard deviations across bootstrapped examples. Numbers above the error bars are the number
of datapoints that are significantly different from human data (α = 0.05), out of 12 data points. B.
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in SI Table 2.

significantly larger mismatch when R = 1 : 0 is mainly due to catastrophic forgetting, which is311

further analyzed in SI Sec. 1.1.6. When less learning comes from the current context (R lower than312

1), the life-long learning performance increases as the within-batch diversity is higher. However, this313

also means the learning signals needed to match the real-time human learning effects are sparser,314

which leads to an increase in the mismatch score (Fig 4 A, left panel, R = 1 : 7 or 1 : 15). If all315

learning is from the memory (R = 0 : 1), the models are then unresponsive to any changes in the316

current context, therefore greatly mismatch human learning effects.317

Similarly for the current-context replay window parameter, longer replay window increases the318

within-batch diversity, but also lower the focus on very recent experience. Reflected in the real-time319

learning benchmark, longer replay window length like 40m or 80m makes the learning slower at320

the beginning but faster later as well as less human-like in the Switch condition, since the learning321

signals to the models cannot immediately “switch”. Therefore, these longer replay windows lead to322

worse real-time mismatch scores (Fig 4 A, middle panel).323

The influence of the aggregation time on the two benchmarks is markedly different. As shown in the324

right panel of Fig 4 A, the life-long learning performance barely changes with respect to T , while the325

mismatch score to human real-time learning effects greatly increases from T = 0.2s to T = 1.0s.326

The change seems even clear for T = 0.4s compared to T = 0.2s. The reason for this extremely327

high sensitivity is that with a longer aggregation window, the chance of sampling the aggregation328

pairs that represent the wanted learning signal is consequently much reduced.329

The tradeoff between real-time and life-long benchmark performance clearly suggests that both330

benchmarks should be jointly tested to complement each other. Algorithms without negative samples331

therefore perform even worse compared to other algorithms in this joint testing, as the condition with332

the lowest real-time mismatch score leads to much lower life-long performance and condition with333

better life-long performance also typically leads to higher real-time mismatch score (Fig 4 B).334

Analysis of learning failures. To further diagnose the failure of models on the real-time learning335

benchmark, we construct a purified and conceptually simpler (but unnatural) real-time learning stream336

by manually selecting aggregation pairs for the models to learn from. Specifically, we subselected337

pairs of consecutive frames in which there are two different images of isolated objects, dropping all338

pairs of frames which contain the same image in both frames or one blank frame during the exposure339

phase. In other words, this manually-selected pair stream has been highly de-sparsified to contain340

precisely the events in which a non-trivial learning signals are expected to be present. Compared to341

the naturally-emerging aggregation pairs sampled from the actual video stream, the manually selected342

aggregation pairs make the learning signal denser and also less noisy (see SI Fig 5 for examples).343

After evaluating all the algorithms in this de-sparsified learning stream under the highest-diversity344

learning condition tested (R = 1 : 3 and W = 20m), which has the least focus on the current345

context, we find that MAE still shows substantial mismatch, and is in fact now the only tested346
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algorithm to do so (Fig 5 A, B). Most surprisingly, its learning effects in the Swap condition show347

increasing discriminative performance, unlike all other models as well as human subjects (Fig 5 A).348

We considered the possibility that this was due to the fact that the (default) high mask ratio MAE349

used (0.75) could be obscuring important details differentiating the two objects. However, even350

after reducing it to 0.1, MAE still fails to show a decreasing performance in the Swapped condition351

(Fig 5 A, left and middle panels). The slight decreasing performance shown in Fig 3 B is possibly352

due to learning from the pair containing the exposure and gray images. These results suggest that the353

masked autoregressive loss formulation, with no mechanism to construct semantically meaningful354

features that are invariant across augmentations, may be at a disadvantage in capturing the flexibility355

of human real-time learning effects.356

In contrast to MAE, almost all the contrastive algorithms achieve noise-ceiling level performance on357

the real-time learning benchmark in the manually de-sparsified learning stream (Fig 5 B). This result358

shows both that these algorithms are capable of capturing the temporal statistics learned by humans359

as long as key candidate learning events are identified post-hoc, and that the failure of those models360

without negative sampling are specifically due to their inability to automatically identify the learning361

signals in such events when they arise in the noisier and sparser natural learning stream.362

5 Discussion363

We introduce a real-time human learning benchmark measuring how well unsupervised models364

predict human visual learning effects and a life-long learning benchmark measuring how efficient365

these models learn under a human-generated continual learning curriculum. We further propose a366

general continual learning process where models jointly learn from the visual experience sampled367

from a recent time window in the current context as well as memory. Multiple high-performing368
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self-supervised learning models are evaluated and differentiated using the proposed benchmarks.369

Our results show that the newly proposed algorithms like SwAV, BYOL and MAE underperform370

earlier proposed algorithms like SimCLR and MoCo v2 on both the real-time human learning and the371

conditions of the life-long learning benchmarks that lead to lower within-batch diversity, even though372

these newer algorithms all have been reported to outperform earlier ones on the typical ImageNet373

dataset. We further show that the algorithm design of explicitly leveraging the negative samples374

indeed helps the performance on both benchmarks by showing that a variant of BYOL using negative375

samples performs much better on both real-time and life-long metrics. Through more analysis on the376

failure of these models, we identify that the failure of some of the learning algorithms is likely due to377

their inability in learning from the sparse signals from the low-diversity environment.378

Our formulation has a number of limitations. Although the current design of the continual learning379

process uses joint training on memory and the current context to address catastrophic forgetting,380

another potential solution for this issue is to apply general-purpose continual learning methods such381

as EWC [37]. However, our preliminary results show that this method is unlikely to improve life-long382

learning performance even compared to the pure continual learning setting (R = 1 : 0) (see SI383

Sec. 1.2.6 and Fig 6). Designing improved learning algorithms that explicitly integrate memory384

to prevent catastrophic forgetting may thus be helpful. In addition, the current random sampling385

policy from the short aggregation time window, current-context replay window, and memory can386

also be improved. Furthermore, humans actively interact with their surrounding environment and387

effectively choose what they learn from through choosing what they attend to. This feature is not yet388

captured in our benchmarks, as the real-time learning benchmark evaluates the learning dynamics389

from the controlled visual stimulus and the life-long learning benchmark presents the models the390

visual experience that was interactively generated by the children at the time of recording but is391

fixed for the models. There have been works integrating such interactive curriculum learning into392

the learning algorithms, especially in exploring how curiosity can help the agents explore or learn393

in human-like fashion [23, 48, 19]. Enabling the evaluation of such feature in our benchmarks is394

therefore another important future step.395

It is well known that young children undergo a critical period in their visual development [2],396

suggesting that the underlying learning algorithms or even architecture undergo substantial changes397

at some point. However, in this work, we do not account for this directly. We simply use the potential398

changes of learning rates to accommodate such a difference, where smaller learning rates are typically399

used for the real-time learning benchmark. It is possible that our simple learning-rate schedule is a400

reasonable null model of developmental changes to start with, but testing other more sophisticated401

models (e.g., fixing lower layers earlier in training) will be part of future work. Moreover, our current402

benchmarks seek to model only behavioral learning effects [30], but comparing models to learning403

effects at the scale of individual neurons [43] will be a key future step.404

As we train DNNs using standard backpropagation algorithm, it is unlikely that this optimization405

procedure is implementable in real organisms [4]. Noticing recent progress in local learning rules that406

are more biologically plausible and the closing gap between these algorithms and error feedback [40],407

we also plan to combine these new rules with unsupervised learning objective functions to test408

whether the combined models can explain the human learning effects better in future work.409

Finally, the egocentric videos recorded from infants were from middle class families living in the410

United States and Australia, which makes the videos unrepresentative for broader community with411

different socioeconomic status or different cultures. Although we believe the conclusions from the412

life-long learning benchmark will hold for visual experience from children with different background,413

which is supported by the high consistence between results from SamCam and AliceCam (see SI414

Fig 3.B), collecting recordings from children of more diverse backgrounds will still be an important415

future step to enhance the inclusiveness of the benchmark. The SAYCam videos also contain416

personally identifiable information as the faces of the parents and the infants can appear in the videos,417

which has been consented by the parents participating in that project [51].418
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